

# 饰面清水混凝土的样板试验研究与关键技术应用

陈国华 叶良浩 杨振杰 秦尹 四川航天建筑工程有限公司 DOI:10.18686/bd.v2i2.1256

[摘 要] 清水混凝土是住房和城乡建设部推广应用的建筑业十项新技术之一,其中以饰面(装饰)清水混凝土为代表的施工工艺,对外观质量要求极高。本文结合工程中的样板试验结果对比和关键技术应用情况,较为全面的阐述饰面清水混凝土的图纸深化、主要材料选择、模板的拼缝与加固、钢筋保护层控制、混凝土施工工艺要点、饰面清水混凝土质量验收及成品保护措施等,文中数据和方法可供类似工程参考。

[关键词] 清水混凝土;样板试验;模板分缝;模板安装;外观质量

#### 前言

饰面清水混凝土是指表面颜色基本一致,由有规律排列的对拉螺栓孔眼、明缝、蝉缝、假眼等组合形成的,以自然质感为饰面效果的清水混凝土。随着建筑施工工艺水平的提高、绿色建筑的兴起,清水混凝土开始越来越受到人们的重视。

本文结合《清水混凝土应用技术规程》JGJ169的相关 要求,以某项目在施工过程中的样板试验结果和关键技术 应用情况为例,从工程概况、技术准备、材料选用、施工要 点、质量验收及成品保护等方面介绍饰面清水混凝土施工。

## 1工程概况

位于广东省惠州市的某综合培训类建筑项目,规划占地面积约10万平方米、建筑面积约5万平方米。该工程的阳台、走道、连桥、楼梯间、被服室(消毒室)、屋面梁、女儿墙、顶层柱上端等部位外露结构设计为饰面清水混凝土,这些部位与周边装饰面层共同形成建筑物的整体观感效果。



图 1 整体效果图

# 2 施工准备

2.1 审图要点

2.1.1 清水混凝土类别

清水混凝土可分为普通清水混凝土、饰面清水混凝土、 装饰清水混凝土三类,各类质量标准各不同,施工准备阶段 应对清水混凝土的类别予以明确。

# 2.1.2 清水混凝土施工范围

本工程共由 12 栋单位工程构成,各栋号结构布置差异极大,而施工阶段只有过程图(无正式版施工图),在审图时严格对每版过程图的清水混凝土的施工范围进行确认,有

利于现场施工组织和成本控制。

## 2.1.3 耐久度要求

清水混凝土耐久度应满足 JGJ169 提出的各项要求。对于露天环境下的清水混凝土,其保护层厚度应满足表 1 要求

表 1 露天环境下清水混凝土保护层厚度允许表

| 部 位   | 清水混凝土保护层厚度 (mm) |
|-------|-----------------|
| 板、墙、壳 | 2 5             |
| 梁     | 35              |
| 柱     | 35              |

#### 2.1.4 清水混凝土分缝及螺栓孔布置

清水混凝土的分缝及螺栓孔布置应整齐一直,满足观感要求。核对螺栓孔位是否与主筋位置矛盾,分缝尺寸应尽量标准化,以提高模板料具的周转效率。

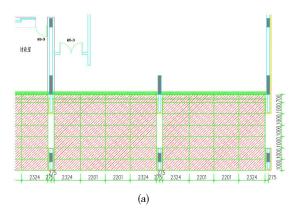
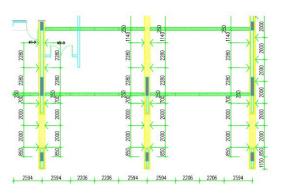
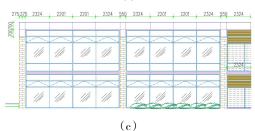





图 2 试验段清水混凝土完成后的整体效果


## 2.2 结构分缝及施工图深化设计


对饰面清水混凝土结构,设计单位应提供构件详图,并明确明缝、蝉缝、对拉螺栓孔眼、装饰图案和装饰片等的形状、位置和尺寸。



文章类型:论文 | 刊号(ISSN):2425-0082







(b)

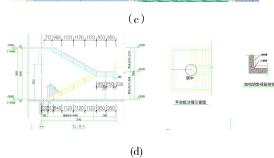



图 32# 楼 1-19 轴至 1-21 轴饰面清水混凝土分缝图例

- (a)建筑平面(楼板)分缝图
- (b)建筑平面(框架梁)分缝图
- (c)建筑外立面(屋面梁、分层线)分缝图
- (d)建筑剖面(楼梯)分缝及详图

#### 2.3 技术方案

工前应根据清水混凝土范围、各部位构造特点编制清水混凝土专项施工方案。在本工程中先后编制了《清水混凝土试验梁施工方案》、《清水混凝土施工方案》、《清水混凝土成品保护方案》。

#### 2.4 技术交底

清水混凝土施工前,应由项目技术负责人组织召开技术交底会,对清水混凝土的范围、质量控制要求、工艺要求进行交底。交底尽量做到图文并茂,给人留下直观的印象。

# 2.5 原材料准备

# 2.5.1 模板工程

本工程模板选用新购 18mm 厚欧洲酚醛胶合板模板, 刚度适用,表面光滑;模板背(次)楞采用进口的 100mm×50mm 杉木木方,主楞采用 10# 槽钢,在对拉螺杆两端应使用塑料堵头。(设计建议采用的如:Doka formwork-多卡模板)

模板在使用后不得平放在地面上,而应直立存放,并对

上表层进行覆盖,应防止模板被雨水损坏以及存储过程中的积水。

#### 2.5.2 钢筋垫块

清水混凝土所采用的钢筋要求应干净、无明显的锈蚀和污染。墙柱钢筋垫块使用与模板接触面小的塑料轮形垫片,楼板采用刚性重型弧形或"狗骨"混凝土垫片,严禁使用小型混凝土垫片。框架梁采用悬离模板的构造做法。



图 4 采用的轮形塑料垫块

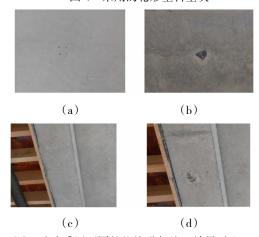



图 5 试验采用不同的垫块进行施工效果对比

- (a)采用四角塑料垫块的楼板
- (b)采用大理石垫块或砂浆垫块的板
- (c)采用钢筋悬离模板的梁
- (d)采用大理石垫块或砂浆垫块的梁

# 2.5.3 混凝土

混凝土配合比必须根据所采用胶凝材料、粗细骨料性质由结构工程师来指定,样品于施工前提交给建筑师审批。 本工程对配合比如下:

- (1)水泥含量不小于 350kg/m3;
- (2)采用 50%的矿渣粉(粒化高炉矿渣)和 50%的 OPC (普通硅酸盐水泥)的胶凝材料,掺合料、水泥需来源一致;
  - (3)水:水泥比例不超过 0.5;
  - (4)水泥:集料比例不超过 6;
- (5)细骨料:水泥的比例不超过 2.2:1,细骨料的颜色要一致;
- (6)20 毫米粗骨料—首选碎石, 不超过 20%, 以通过 10mm 的筛子;
  - (7) 坍落度最小 125 毫米,最大 175 毫米。
  - 3清水混凝土施工要点
  - 3.1 模板工程

第2卷◆第2期◆版本1.0◆2018年2月 文章类型:论文 | 刊号(ISSN):2425-0082

### 3.1.1 清水模板的切割与拼缝

接触面侧边采用手工刨平。避免对板进行切割和钻孔时,接触面膜和胶合板分裂、撕扯和磨损。所有模板切口、滴水线条都必须用封边漆处理,避免拆模时出现毛边。



图 6 采用手工刨对模板侧面处理

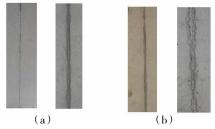



图 7 模板侧面处理前后的拼缝效果试验对比

(a)模板侧面处理后的拼缝成型效果 (b)模板侧面未处理的拼缝成型效果

# 3.1.2 模板支撑系统

次楞木方排列应整齐,间距均匀,端部、角部必须有木方,沿横向布置,主楞槽钢沿构件纵向布置,主次楞间距应满足容许承载力及绕度要求,接头搭接长度均不小于500mm。





图 8 模板搭设示意图

由于本项目外立面采用清水混凝土框架梁充当装饰线条,故在工程中采用了如图 7 所示的方通管加固,且将梁的钢筋骨架用铁丝系于水平的方通钢管上,避免了使用垫块。



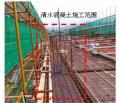



图 9 边梁采用方通钢管加固

3.1.3 对拉螺栓眼

对拉螺栓的套管采用内径 27mm、外径 32mm 的 PVC 管。在对拉螺杆两端都使用塑料堵头,塑料堵头小头外径同 PVC 管内径,小头内径同对拉螺栓直径,大头外径同 PVC 管外径,大头内径同对拉螺栓直径。在堵头和模板接触部位设置橡胶垫圈, 垫圈外径同 PVC 管外径, 内径同对拉螺栓直径。







图 10 采用塑料堵头的外观质量试验对比 (a)塑料堵头样品(b)未采用塑料堵头(c)采用塑料堵头 3.1.4 清水模板的固定

模板应从背后固定胶合板,钉子不得刺穿模板,不得在面层通过钉子固定,从面层采用钉子固定易破坏中密度贴面胶合板膜并降低再利用次数。必要时底面可设置双层板,下层的板为用钉固定在支撑上的工作面,上层板与下层板用螺钉固定。这样可以消除板之间的凹陷,降低中密度贴面胶合板的磨损和印记。

# 3.1.5 清水模板的成品保护

完成的清水模板应做好成品保护,避免钢筋绑扎过程中污染、损坏模板板面,通常采取的措施是在混凝土浇注前在模板板面覆盖彩条布,混凝土浇注前,板面用浸湿的棉布擦拭干净。



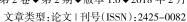




图 11 清水模的成品保护措施

# 3.1.6 模板拆除与护理

(1)模板拆除①墙柱模板。夏季建议时间在 24 至 36 小时之间,冬季再增加 24 小时,在混凝土达到要求的强度后,小心去掉模板,不得造成任何损伤。②梁板底模。取决于混凝土强度和结构要求,但要争取在 7 天到 14 天之内拆模,降低染色和表面褪色的风险。

(2)模板护理。①模板使用后应采用水蒸汽小心清洗。 在清理混凝土残留时应注意避免损坏板表面。推荐使用塑料或尼龙工具/刷子。②如有需要,按照制造商说明,采用防水填料修补模板面层缺陷。③以后每次使用前,涂敷新鲜的脱模剂涂层,脱模剂使用高品质、不着色的化学脱模





剂;④干净的模板在重新包装和储藏前应晾干。⑤小心储 藏模壳和散装模板面板,避免日晒雨淋。

#### 3.2 钢筋工程

钢筋工程应避免采用垫块,仅框架梁底面及侧面有清 水混凝土要求时,采用钢筋支撑将梁钢筋悬离模板底部。

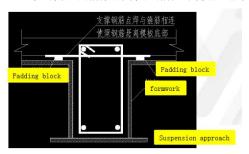



图 12 框架梁钢筋悬离模板示意图

钢筋绑扎时,每个钢筋交叉点均应绑扎,绑扎钢丝不少 于两圈,扎扣及尾端朝构件截面的内侧。钢筋应保持清洁、 无明显锈蚀和污染,完成后的钢筋工程应采取保护措施,防 止雨水冲淋。

#### 3.3 混凝土工程

# 3.3.1 混凝土分层浇筑

通过扁平软管和塑料管把混凝土浇灌在模板里,确保 混凝土直接向模板底部浇筑,不得接触模板表面或钢筋。 在浇筑墙身混凝土时,应沿墙身长度分层浇筑,每层不超过 500毫米的混凝土,以允许混凝土里大部分大气泡(3毫米直 径)升到表面并分散到空气。在插入式振荡前,浇筑至最少 3到4米。这样可以确保浇筑的混凝土紧实,不会沿模板流 动、离析。

## 3.3.2 混凝土浇筑速率

纵向浇筑速率必须大于2米/小时,以确保混凝土层良 好地粘结在一起,形成统一、均质基质,低于此浇筑速率会导 致不同的灌注线、冷缝以及水分渗透的潜在问题。

## 3.3.3 混凝土振捣

(1)振捣位置。合理规划振捣棒浸入的位置,使模板面 受到同样的震荡力,因为震荡力不同可能导致混凝土面的 深、浅颜色带。不要将内部振捣棒放置在靠近模板的地方, 把振捣棒插入下放到墙剖面的中心。这样可以避免暴露混 凝土面的斑伤、颜色和集料密度的明显不同。500mm 的分 层厚度宜选用 400 毫米长的振捣棒,不要把振捣棒头沉浸 在已紧实下层的深处.须通过很浅地浸入下层将两层融合 起来。

(2)振捣时间控制。振捣宜适当,振捣时间过长宜造成 "过振"问题,混凝土混合物中的较小、较轻物质会聚集在表 面,会形成色差,模板接缝处漏浆也将更严重。振捣不到位, 则易形成蜂窝麻面问题。振捣时宜把振捣棒头迅速地全部 沉浸在新混凝土层中,并保持一段时间,直到气泡不再上升 到表面,一般需要 15 秒左右才能去除混凝土里的空气,然后 将振捣棒头缓慢地退出,并移动到下一个压实位置。

# 3.3.4 混凝土养护

采用聚乙烯或防水油布之类的密封养护膜进行养护, 并在防护与混凝土表面留有微小的通气的空间。为避免造 成深浅色斑,严禁将养护膜直接接触混凝土或直接浇水养 护,养护时间不少于 7d。对在比较温暖的季节,如果去掉模 板后混凝土表面已经充分固化,且不会过早变干和沾上灰 尘,一般可以不用养护。

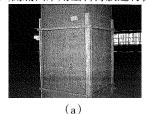
# 3.4 混凝土表面处理

# 3.4.1 表面修补

清水混凝土要完全做到效果—致难度较大,不可避免 存在表面修补。清水混凝土表面的修补工作应经设计、监 理(建设)单位事先同意,共同确定修补方案。常见清水混凝 土的外观质量缺陷可参照 JGJ169 所列方法进行处理。

# 3.4.2 表面涂刷保护涂料

所有暴露清水混凝土表面均应根据制造商说明使用面 层密封剂进行覆盖,形成一个不可视、不着色、防水但透气 的密封层,且在紫外线照射下不会变黄,也不会降解或者在 混凝土表面留下印记。


#### 4 饰面清水混凝土的质量验收

饰面清水混凝土的分部工程、分项工程及各检验批的 质量验收在满足《建筑工程施工质量验收统一标准》 GB50300、《混凝土结构工程施工质量验收规范》GB50204 的基础上,还应满足《清水混凝土应用技术规程》JGJ169的 相关要求,模板及支撑架搭设应满足《建筑施工模板安全技 术规范》JGJ162 要求。

#### 5 清水混凝土的成品保护

5.1 清水混凝土成型后,装饰、安装等后续工序不得随 意剔凿混凝土结构,如需开洞,要制定处理方案,经设计同意 方可施工。

5.2 墙柱梁的阴阳角、人员可接触、后续工序易对其造 成污染的部位应采取保护措施。阴阳角采用薄木条、硬质 塑料条进行保护,侧底面采用塑料薄膜进行保护。



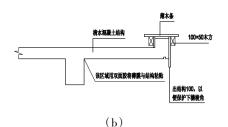



图 13 清水混凝土成品保护措施 (a)柱棱角保护措施(b)层间清水阳台保护措施

第2卷◆第2期◆版本1.0◆2018年2月 文章类型:论文 | 刊号(ISSN):2425-0082

# 现代电梯的机械构造及机械安全装置浅谈

郭闯

西继迅达(许昌)电梯有限公司 DOI:10.18686/bd.v2i2.1214

[摘 要] 现代电梯作为高层建筑中的重要组成部分,关系到人们的生命财产安全。因此对现代电梯的安全运行必须要给予高度的重视。不仅要对现代电梯的机械结构进行一定的了解,还要加强对限速器、安全钳、缓冲器以及终端超越保护装置等安全装置进行分析,以确保现代电梯的安全运行。基于此,本文分析了电梯机械结构安全事故原因,对现代电梯的机械构造及其安全装置进行了论述分析。

[关键词] 电梯机械结构;安全事故原因;机械构造;安全装置

# 1 电梯机械结构安全事故原因的分析

在电梯运行过程中,如果电梯的相关机械出现磨损或锈蚀等情况,则制动力矩会受到影响,易造成电梯事故。电梯事故从类型上可分为冲顶、蹲底、门系统事故、溜梯及其他种类。蹲底和冲顶分别是指电梯下坠至底部和电梯冲至井道顶部;溜梯是指在电梯门没有彻底关闭的情况下突然下落,溜梯事故发生后极易导致蹲底发生。电梯的停止和停止状态的保持均由制动器实现,制动器的性能与电梯安全有着紧密的联系。

#### 2 现代电梯的机械构造分析

#### 2.1 轿厢系统

现代电梯轿厢是现代电梯中重要的组成部分,起到运送乘客的作用。现代电梯轿厢主要包括轿厢架、轿厢体等。其中,轿厢架主要包括上、下梁与立梁,其作用是进行轿厢的悬吊与固定,是轿厢中的重要的承载构件。在设计的过程中,为了能提高轿厢的刚度与避免出现轿厢分倾斜现象,可在轿架上安装拉条。其中,拉条的两端分布固定在下梁与立梁上。而轿厢体主要包括轿门轿底、轿顶及轿壁等。其中轿厢的内部高度应高于2m,并与轿底处设置称重装置,以有效预防超重现象。而在轿顶处应安装照明设、安全窗,有利于在

现代电梯发生故障时的救援。

## 2.2 曳引系统

曳引系统的主要功能是输出与传递动力, 使现代电梯 运行。曳引系统主要由曳引机、曳引钢丝绳,导向轮,反绳轮 组成。而曳引机的安放位置根据曳引机的安放位置(井道的 上部或下部), 现代电梯的曳引型式可以分为上置式传动和 下置式传动。上置式传动的特点是对建筑物施加的载荷量 较小,对井道的建筑面积要求较小,这也是现代电梯曳引机 最常见的一种放置方式。现代电梯应用永磁同步无齿轮曳 引机,采用最先进的 VVVF 变频拖动系统,应用多项领先技 术,将减震部分由常规的内部转移到了外部,在解决电磁力 带来的噪音和震动的同时更方便减震系统调整和后期维 护。现代电梯的曳引能力是否满足使用要求是通过曳引试 验进行验证的。对于部分在用现代电梯,由于使用条件的变 化,如在曳引绳槽磨损、轿厢装修等情况下,现代电梯的曳引 能力都会发生变化,大多数情况导致曳引能力的不足。因此 在现代电梯的检验中,必须进行曳引试验,如果发现其曳引 能力不满足试验要求,则应当从现代电梯设计、安装等环节 上查找原因,通过检查和计算找出存在的问题,根据实际情 况,制定切实可行的解决方案,使现代电梯的曳引能力满足

5.3 应保持清水混凝土表面清洁,清水混凝土表面不得做测量标记.禁止乱涂乱画。

## 6 结语

在饰面清水混凝土施工中,通过工前做好深化设计,明确明缝、蝉缝及螺栓孔位置。选择优质的模板及支撑材料、选用与模板接触面较小且与混凝土同色的垫块,合理选择混凝土的配合比、骨料颜色。过程中严格执行样板引路、按照既定工艺施工、做好各阶段的成品保护,并按照规范要求进行各分项工程验收,清水混凝土的外观质量能够得到一定控制。本文通过对试验结果、同类别的规范进行对比,并列出各分项工程的标准做法,对清水混凝土外观质量的控制亦有一定的借鉴意义。

[1]Architectural Visual Concrete—General Guidelines,forster and partners.

[2]JGJ169-2009,清水混凝土应用技术规程,中国建筑工业出版社,2009-05-01.

[3]GB50204-2002,混凝土结构工程施工质量验收标准(2010版),中国建筑工业出版社,2012-04-01.

[4] 清水混凝土施工工艺标准,中国建筑工程总公司,2005-03-01.

[5]GB50300-2013,建筑工程施工质量验收统一标准,中国建筑工业出版社,2014-05-01.

[6]JGJ162-2008,建筑施工模板安全技术规范,中国建筑工业出版社,2008-12-01.

## 参考文献: